通过结合实验和数学,伽利略开创了科学研究的先河,从此物理学走上了快速发展的道路。此后,牛顿发扬光大,建立了牛顿力学,成为经典物理学的开创者,他也被冠以人类史上最伟大的物理学家。
在牛顿之后,又有麦克斯韦、普朗克、爱因斯坦、玻尔、狄拉克、费曼、薛定谔等一众物理学家,发现了一系列新的物理学定律,极大改变了人类对于世界的认识。不仅如此,人类利用物理学定律发展出了现代科技文明,彻底革新了人类的生活。
然而,物理学定律在造福人类的同时,有一条物理定律却给人类带了绝望,以致于有的物理学家发出感叹,宁愿不要发现它。这条定律预示着宇宙必然会走向不可逆转的毁灭,它就是熵增定律。那么,熵增定律是怎么来的呢?
这还要从热力学的发展说起。大量的实验表明,能量是守恒的,它们不会凭空出现和消失,只会在不同形式之间转换,这就是能量守恒定律,也称热力学第一定律。这一定律的诞生,让不消耗能量却能做功的永动机化为泡影。
此后,又有人设想建造另一种永动机,这种机器可以从自然界中吸收热量,然后以此来驱动机器做功,这并不违背能量守恒定律。然而,无论怎么尝试,这类永动机也是没有造出来,原因在于还有未知的热力学定律在起作用。
1824年,物理学家卡诺在研究热机时发现,热量并不能被百分百转换为能量,其热效率正相关于高温和低温热源的温差。为了定量描述热机的能量耗散,克劳修斯在1865年引入了一个常数——熵。
熵可以表征无用能量的多少,无用能量越多,熵越大;有用能量越多,熵越小。热机在运行过程中,会产生无用的热量,例如,机械结构之间相互摩擦所产生的热量,这些热量不能用于做功,系统的熵会变得越来越大。
由此可见,能量的转化和传递是有方向性的,低温热源的热量不会自发地传递给高温热源,热量不能自发并且全部转化为功。因此,熵的值只会变得越来越大,并且是不可逆转的,这就是熵增定律,亦称热力学第二定律,它表明第二类永动机也是不可能实现的。
1877年,物理学家玻尔兹曼进一步扩展了熵的概念。他发现,系统的熵与其微观状态数量有关。倘若系统的微观状态数量越多,意味着系统越混乱,表明熵值越大。一个系统的有序度只会自发地变得越来越低,熵会逐渐增加。
那么,为什么熵增定律十分特殊?为什么它可以预示宇宙的最终结局呢?
对于其他物理定律,它们都是关于时间对称的,无论是时间正向还是逆向流逝,都没有任何区别,例如,一颗小球从空中自由落体到达地面,如果从地面以小球的落地末速度,把小球竖直向上扔出,该小球又会到达原有的高度。
然而,熵增定律却非常特殊,熵只能增大,水和乙醇混合后不会自发分离,玻璃打碎后也无法自动复原。熵增定律表明,时间的流逝方向是单一的,只能向前流逝,这是牛顿和爱因斯坦的物理学所无法解释的。不仅如此,这条定律还设定好了宇宙的结局。
宇宙诞生于138亿年前的低熵状态,随着宇宙的演化,无序度越来越高,有用能量被逐渐消耗掉,宇宙的熵在不断增大。虽然宇宙中形成了很多有序结构和低熵体,例如,恒星、星系和包括人类在内的地球生命,但这些都需要消耗宇宙的有用能来维持低熵状态,所以总体上还是会导致整个宇宙的熵变大。
因此,宇宙之形成以来,就注定朝着熵最大的方向在演化。最终,行星会脱离原有的轨道并解体,原子四分五裂,质子发生衰变,黑洞蒸发殆尽,只留下光子以及轻子。
宇宙迟早会迎来无序度最高、有用能耗尽的最大熵状态,这就是热寂的结局,预计时间是在10^1000年以后。当然,这个时间对于渺小的人类而言非常漫长,我们还有足够的时间来保持低熵的状态。